Hits


용어 정리

  • Invertible Linear Trnasformation (역선형 변환)


Theorem8.
Let $ A $ be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given $A$, the statements are either all true or all false

a.  $A$ is an invertible matrix.
b.  $A$ is row equivalent to the $n \times n$ identity matrix.
c.  $A$ has $n$ pivot positions.
d.  The equation $A\mathbf{x} = 0$ has only the trivial solution.
e.  The columns of $A$ form a linearly independent set.
f.  The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ is one-to-one.
g.  The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each $\mathbf{b}$ in $ \mathbb{R}^{n} $ .
h.  The columns of $A$ span $ \mathbb{R}^{n} $.
i.  The linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps $ \mathbb{R}^{n} $ onto $ \mathbb{R}^{m} $ .
j.  There is an $n \times n$ matrix $C$ such that $CA = I$.
k.  There is an $n \times n$ matrix $D$ such that $AD = I$.
l.  $ \mathbb{A}^{T} $ is an invertible matrix.

  • $A$ 가 invertible 이면 위 조건을 다 만족하고, not invertible 이면 위 조건을 다 만족하지 않는다.
  • $A\mathbf{x} = 0$ 은 trivial solution만을 갖으므로 linearly independent 이며 n pivot position을 만족한다.
  • n개의 pivot position을 만족하므로 one-to-one 도 성립하고 $A$ 는 solution이 있으므로 $A$는 $ \mathbb{R}^{n} $ space에 span 하며 이로 인해 onto 역시 성립하게 된다.

  • 부연 설명을 하면, onto 이기 위해서는 Ax=b 의 식에서 임의의 b in Rn 이 모두 해를 가져야한다. 즉 A 의 모든 row 가 pivot 을 가지고 있으며, invertible 한 것이다.
  • invertible 하기에 solution 이 unique 하므로 one-to-one 이 성립된다. 반대로 one-to-one 일 경우 invertible 하다.


예제

Desktop View

  • R3 공간의 3x3 행렬이고 scalar multiplication 이 없고 눈대중으로 row reduction 을 해도 inconsistent 한 row 가 없으므로 3개의 pivot postion 을 가지고 trivial solution 임을 확인할 수 있다.
  • 따라서 linearly independent 하므로 A matrix 는 invertible 하다고 볼 수 있다.



Invertible Linear Transformation - 역선형 변환

Desktop View

  • x 에서 Ax 로 가는 선형변환이 있을 때, 다시 x 로 돌아오는 변환이 있으면 역선형변환이라고 한다.
  • S 함수가 존재하는 경우에 T는 invertible 하다고 한다.



Theorem9.
Let $T$ : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n} $ be a linear transformation and let $A$ be the standard matrix for $T$ . Then $T$ is invertible if and only if $A$ is an invertible matrix. In that case, the linear transformation $S$ given by $S(\mathbf{x}) = \mathbb{A}^{-1}\mathbf{x}$ is the unique function satisfying equations (1) and (2)

  • linear transformation은 항상 standard matrix 가 존재한다. $T$ 가 invertible 이면 $A$ (standard matrix) 도 invertible 하다. (역행렬을 가질 수 있음)
  • 또 linear transformation $S$ 함수는 $S(\mathbf{x}) = \mathbb{A}^{-1}\mathbf{x}$ (1)과 (2) 에 대해 유일함수임을 만족한다.